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Abstract. This paper presents a new efficient chaos-based color image cipher
robust against chosen-plaintext attack. The chaotic Hénon map and Lü system
are employed to produce the permutation and substitution keystream sequences
for image data scrambling and mixing, respectively. In the permutation stage,
the positions of colored subpixels in the input image are scrambled using a
pixel-swapping mechanism. To strengthen the robustness of the substitution
procedure against chosen-plaintext attack, we introduce a novel mechanism for
associating the keystream sequence with the plain-image. Compared with other
related mechanisms, the new mechanism is implemented during the subpixel
values mixing process rather than the keystream generation process. As a result,
the keystream sequence can be reused among different rounds of substitution
operation, and hence the computational cost is reduced. The suggested mech-
anism also increases the diffusion intensity and a desired diffusion effect can be
achieved with only two rounds of overall permutation-substitution operation.
Experimental results demonstrate that the proposed scheme has a satisfactory
level of security.

Keywords: Image cipher � Permutation-substitution � Hénon map
Lü system � Plaintext-dependent keystream sequence

1 Introduction

Over the past decade, great concerns have been raised about the security of images
transmitted over the Internet. A direct and obvious way to protect image data from
unauthorized eavesdropping is to employ an encryption algorithm. Unfortunately,
commonly used block ciphers, including DES and AES, characterized by high com-
putational complexity are difficult to meet the increasing demand for real-time com-
munications when dealing with digital images characterized by bulk data capacity. To
meet this challenge, many different encryption technologies have been proposed.
Among them, the chaos-based technology has suggested a promising direction. In
1998, Fridrich suggested an iterative permutation-substitution model for construction
of secure image ciphers [1]. In each round of the cipher, the pixel positions are firstly
scrambled in a pseudorandom manner, which leads to a great reduction in the
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correlation among neighboring pixels. Then, the pixel values are altered sequentially
and the influence of each pixel is diffused to all its succeeding ones during the mod-
ification process. The whole permutation-substitution operation is often iterated for
several rounds to ensure the influence of each individual pixel can be spread over the
entire cipher-image.

Conventionally, three area-preserving invertible chaotic maps, i.e., the cat map, the
baker map, and the standard map, are widely used for image scrambling. Unfortunately,
this kind of permutation strategy suffers from two main disadvantages, i.e., the period-
icity of discretized version of chaotic maps and only applicable to square images [2–4].
To address these two drawbacks, Fu et al. [5] suggested an image scrambling scheme
using a chaotic sequence sorting mechanism. In [6], inspired by the natural ripple-like
phenomenon that distorts a reflection on a water surface, Wu et al. suggested a novel
scrambling algorithm that shuffle images in an n dimensional (n D) space using wave
perturbations.

Recently, it has been reported that many existing image encryption schemes have
been successfully broken by using known/chosen-plaintext attacks [7–10]. This is due
to the fact that the substitution keystream sequences used in these schemes is solely
determined by the secret key. That is, the same keystream sequence is used to encrypt
different plain-images unless a different secret key is used. Consequently, the key-
stream sequence may be determined by encrypting some specially created images (e.g.
an image with all pixels having the same value) and then comparing them with their
corresponding outputs. Obviously, if a keystream sequence depends on both the secret
key and the plaintext, then such analysis may become impractical. For instance, in [11],
the keystream elements are extracted from multiple times iteration of the logistic map,
and the iteration times are determined by plain-pixel values. In [12, 13], the authors
introduced a mechanism that dynamically alters the value of control parameter of the
chaotic map under the control of plain-pixel values. Unfortunately, the above mech-
anisms are implemented during the keystream generation process. This means a new
keystream sequence should be produced for each round of substitution operation,
thereby increasing the computational cost. To address this problem, this paper suggests
a new mechanism that dynamically alters the values of the keystream elements under
the control of plain-subpixel values during the subpixel values mixing process. As the
keystream generation process has no dependency on the plain-image, the keystream
sequence can be reused among different rounds of substitution operation. The sug-
gested mechanism also increases the diffusion intensity and a desired diffusion effect
can be obtained with only two rounds of overall permutation-substitution operation. In
the permutation stage, the positions of subpixel in each color channel of the
plain-image are scrambled across the entire color space using a pixel-swapping strategy
under the control of a keystream sequence generated from the Hénon map. Experi-
mental results demonstrate that the proposed scheme has a satisfactory level of security.

The remainder of this paper is organized as follows. The proposed color image
encryption algorithm is described in detail in Sect. 2. In Sect. 3, the diffusion perfor-
mance of the proposed cryptosystem is analyzed. In Sect. 4, we analyze the security of
the proposed cryptosystem through various statistical analyses, key space analysis and
key sensitivity analysis. Finally, conclusions are drawn in the last section.
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2 The Image Encryption Scheme

As aforementioned, the chaotic Hénon map and Lü system are employed in our scheme
to generate the permutation and substitution keystreams for image data scrambling and
masking. A brief introduction of the two models is given below.

The Hénon map [14], introduced by Michel Hénon as a simplified model of the
Poincaré section of the Lorenz model, is one of the most studied examples of
dynamical systems that exhibit chaotic behavior. The Hénon map takes a point (xn, yn)
in the plane and maps it to a new point, as described by

xnþ 1 ¼ yn þ 1� ax2n;
ynþ 1 ¼ bxn;

�
ð1Þ

where a and b are two parameters. The map is chaotic with classical parameter values
a = 1.4 and b = 0.3. Evidently, the initial conditions (x0, y0) of the map are the
immediate candidate for the secret key for permutation, as they uniquely determine a
chaotic trajectory from which the permutation keystream is extracted.

Mathematically, the Lü system [15] is described by

_x ¼ aðy� xÞ;
_y ¼ �xzþ cy;
_z ¼ xy� bz;

8<
: ð2Þ

where a, b and c are real parameters. Numerical experience shows that the system
exhibits chaotic behavior when a = 36, b = 3 and c 2 (12.7, 17.0)[ (18.0, 22.0)[
(23.0, 28.5)[ (28.6, 29.0)[ (29.334, 29.345). Similarly, the initial conditions (x0, y0,
z0) of the system are used as the secret key for substitution.

Without loss of generality, a 24-bit RGB color image of size W � H is used as an
input. The detailed encryption process is described as follows:

Step 1: Load the subpixel data of the input image to a 2-D byte matrix

imgData ¼
p0 p1 � � � p3�W�1

p3�W p3�W þ 1 � � � p3�W�2�1

� � � � � � � � � � � �
p3�W�ðH�1Þ p3�W�ðH�1Þþ 1 � � � p3�W�H�1

2
664

3
775

Step 2: Generate a chaotic matrix chaoMat of the same size as that of imgData with
each element consisting of two floating-point numbers obtained by iterating
map (1).

Step 2.1: Pre-iterate map (1) for T0 times to avoid the harmful effect of transi-
tional procedure, where T0 is a constant.
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Step 2.2: Continue the iteration for 3 � W � H times. For each iteration, the
current values of the two state variables x and y are stored into a matrix chaoMat =

ðcmxð0Þ; cmyð0ÞÞ ðcmxð1Þ; cmyð1ÞÞ � � � ðcmxð3�W�1Þ; cmyð3�W�1ÞÞ
ðcmxð3�WÞ; cmyð3�WÞÞ ðcmxð3�W þ 1Þ; cmyð3�W þ 1ÞÞ � � � ðcmxð3�W�2�1Þ; cmyð3�W�2�1ÞÞ

� � � � � � � � � � � �
ðcmx 3�W�ðH�1Þ½ �; cmy 3�W�ðH�1Þ½ �Þ ðcmx 3�W�ðH�1Þþ 1½ �; cmy 3�W�ðH�1Þþ 1½ �Þ � � � ðcmxð3�W�H�1Þ; cmyð3�W�H�1ÞÞ

2
664

3
775

as an element in the order from left to right, top to bottom.
Step 3: Extract a permutation matrix permMat =

ðpmxð0Þ; pmyð0ÞÞ ðpmxð1Þ; pmyð1ÞÞ � � � ðpmxð3�W�1Þ; pmyð3�W�1ÞÞ
ðpmxð3�WÞ; pmyð3�WÞÞ ðpmxð3�W þ 1Þ; pmyð3�W þ 1ÞÞ � � � ðpmxð3�W�2�1Þ; pmyð3�W�2�1ÞÞ

� � � � � � � � � � � �
ðpmx 3�W�ðH�1Þ½ �; pmy 3�W�ðH�1Þ½ �Þ ðpmx 3�W�ðH�1Þþ 1½ �; pmy 3�W�ðH�1Þþ 1½ �Þ � � � ðpmxð3�W�H�1Þ; pmyð3�W�H�1ÞÞ

2
664

3
775

from chaoMat according to

pmxðnÞ ¼ modðsigðabsðcmxðnÞÞ; aÞ;HÞ;
pmyðnÞ ¼ modðsigðabsðcmyðnÞÞ; aÞ; 3�WÞ;

�
ð3Þ

where abs(x) returns the absolute value of x, sig(x, a) returns the a most significant
decimal digits of x, and mod(x, y) divides x by y and returns the remainder of the
division. An a value of 15 is recommended as all the state variables in our scheme
are declared as double-precision type, which has 15 or 16 decimal places of
accuracy.
Step 4: Generate a chaotic sequence of length Lcs = 3 � W � H by iterating system
(2).

Step 4.1: Pre-iterate system (2) for T0 times for the same purpose mentioned
above. The system can be numerically solved by using fourth-order
Runge-Kutta method, as given by

xnþ 1 ¼ xn þ h=6ð Þ K1 þ 2K2 þ 2K3 þK4ð Þ;
ynþ 1 ¼ yn þ h=6ð Þ L1 þ 2L2 þ 2L3 þ L4ð Þ;
znþ 1 ¼ zn þ h=6ð Þ M1 þ 2M2 þ 2M3 þM4ð Þ;

8<
: ð4Þ

where

Kj ¼ aðyn � xnÞ
Lj ¼ �xnzn þ cyn
Mj ¼ xnyn � bzn;

8<
: ðwith j ¼ 1Þ

Kj ¼ a ðyn þ hLj�1=2Þ � ðxn þ hKj�1=2Þ
� �

Lj ¼ �ðxn þ hKj�1=2Þðzn þ hMj�1=2Þþ cðyn þ hLj�1=2Þ
Mj ¼ ðxn þ hKj�1=2Þðyn þ hLj�1=2Þ � bðzn þ hMj�1=2Þ;

8<
: ðwith j ¼ 2; 3Þ
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Kj ¼ a ðyn þ hLj�1Þ � ðxn þ hKj�1Þ
� �

Lj ¼ �ðxn þ hKj�1Þðzn þ hMj�1Þþ cðyn þ hLj�1Þ
Mj ¼ ðxn þ hKj�1Þðyn þ hLj�1Þ � bðzn þ hMj�1Þ;

8<
: ðwith j ¼ 4Þ

and the step h is chosen as 0.005.
Step 4.2: Continue the iteration for W � H times. For each iteration, the current
values of the three state variables x, y and z are in turn stored into an array
subSeq = {ss0, ss1, …, ss3�W�H–1}.

Step 5: Extract a substitution keystream subKstr = {sk0, sk1, …, sk3�W�H–1} from
subSeq according to

skn ¼ mod½sigððabsðssnÞ; aÞ;GL�; ð5Þ

where GL is the number of gray levels in the input image (for a 24-bit RGB image,
GL = 256).
Step 6: Encipher the subpixel data of the input image, i.e. the matrix imgData, using
iterative permutation-substitution operations.

Step 6.1: Scramble the subpixels in imgData according to the permutation
matrix permMat, or more specifically, swap each subpixel pn in imgData with
another one located at (pmx(n), pmy(n)) in the order from left to right, top to
bottom.
Step 6.2: Mask the values of each scrambled subpixel in imgData in the order
from left to right, top to bottom.

Step 6.2.1: Bit-wise rotate the currently applied keystream element skn to the
right under the control of the value of the previously operated subpixel pn−1,
as described by Eq. (6).

sknðnewÞ ¼ ½skn � ðlog2 GL � modðpn�1; log2 GLÞ�j
ðskn � modðpn�1; log2 GLÞÞ; ð6Þ

where “� s” and “� s” denote a left and right shift by s bit, respectively,
and “|” denotes a bit-wise OR operation. For the first subpixel p0, the initial
value p−1 can be set as a constant.
Step 6.2.2: Calculate the cipher-subpixel values according to Eq. (7).

cn ¼ sknðnewÞ � mod ðpn þ sknðnewÞÞ;GL
� �� �� cn�1; ð7Þ

where pn is the currently operated subpixel, cn and cn–1 are the output and
previous ciphered subpixels, respectively, and ⊕ performs bit-wise exclu-
sive OR operation. Similarly, one may set the initial value c–1 as a constant.
Step 6.2.3: return to Step 6.2.1 until the values of all the subpixels in
imgData are mixed.

Step 7: Repeat Step 6 until the influence of each individual subpixel is spread out
over the entire cipher-image.
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The decryption procedure is similar to that of the encryption process except that
some steps are followed in a reversed order. Particularly, the inverse of Eq. (7) is given
by

pn ¼ mod sknðnewÞ � cn � cn�1 þGL � sknðnewÞ
� �

;GL
� �

: ð8Þ

As can be seen from the above description of the proposed encryption algorithm,
we associate the keystream sequence with the plain-image by bitwise rotating each
keystream element before it is applied to a subpixel, and the number of bits to be
rotated is determined by the original value of the previously operated subpixel. As the
chaotic sequence generation procedure (Step 4) and the subsequent keystream sequence
quantification procedure (Step 5) have no dependencies on the plain-image, the key-
stream sequence can be reused among different rounds of substitution operation.
Moreover, as can be seen from Eq. (7), a subpixel is mixed with the keystream element
as well as previous ciphered subpixel, where the latter contains the accumulated effect
of all its previous subpixels values. In our scheme, by associating the keystream
sequence with the plain-image, the influence of each individual subpixel also acts on
keystream elements. As a result, the diffusion intensity is increased and a desired UACI
performance can be achieved with fewer rounds of overall permutation-substitution
operation.

3 Analysis of the Diffusion Performance of the Proposed
Scheme

As aforementioned, the substitution procedure serves to spread the influence of indi-
vidual plaintext bits over as much of the ciphertext as possible. This is of much
importance because otherwise the cryptosystem will be vulnerable to chosen-plaintext
attack. The differential analysis is the most common way to implement the
chosen-plaintext attack. To do this, an opponent may firstly create two plain-images
with only one-bit difference, and then encrypt the two images using the same secret
key. By observing the differences between the two resulting cipher-images, some
meaningful relationship between plain-image and cipher-image could be found out, and
it further facilitates in determining the keystream. Obviously, this kind of cryptanalysis
may become impractical if a cryptosystem is highly sensitive to plaintext, i.e. changing
one bit of the plaintext affect every bit in the ciphertext.

To measure the diffusion property of an image cryptosystem, two criteria, i.e.,
NPCR (the number of pixel change rate) and UACI (the unified average changing
intensity) are commonly used. The NPCR is used to measure the percentage of different
pixel numbers between two images. Let I1(i, j, k) and I2(i, j, k) be the (i, j)th pixel in kth
color channel (k = 1, 2, 3 denotes the red, green, and blue color channels, respectively)
of two images I1 and I2, the NPCR can be defined as:
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NPCR ¼

P3
k¼1

PH
i¼1

PW
j¼1

Dði; j; kÞ

3� H �W
� 100%; ð9Þ

where D(i, j, k) is defined as

Dði; j; kÞ ¼ 0 if I1ði; j; kÞ ¼ I2ði; j; kÞ;
1 if I1ði; j; kÞ 6¼ I2ði; j; kÞ:

�
ð10Þ

The second criterion, UACI is used to measure the average intensity of differences
between the two images. It is defined as

UACI ¼ 1
3� H �W

X3
k¼1

XH
i¼1

XW
j¼1

I1ði; j; kÞ � I2ði; j; kÞj j
GL � 1

" #
� 100%: ð11Þ

Clearly, no matter how similar the two input images are, a good image cryp-
tosystem should procedure outputs with NPCR and UACI values ideally being equal to
that of two random images, which are given by

NPCRexp ected ¼ 1� 1
2log2 GL

� �
� 100% ð12Þ

and

UACIexp ected ¼ 1
G2

L

PGL�1

i¼1
iðiþ 1Þ

GL � 1

0
BBB@

1
CCCA� 100%: ð13Þ

For instance, the NPCR and UACI values for two random color images in 24-bit
RGB format are 99.609% and 33.464%, respectively.

The NPCR and UACI of the proposed cryptosystem are evaluated using five
standard 24-bit color test images of size 512 � 512 taken from the USC-SIPI image
database. The differential images are created by randomly changing 1-bit in the original
ones, as listed in Table 1. The two images in each test pair are encrypted using the
same secret key, and their NPCR and UACI values under different number of cipher
rounds are calculated and compared with that of the conventional scheme, as listed in
Tables 2 and 3, respectively. As can be seen from Tables 2 and 3, though both the
proposed and the conventional schemes take two rounds to obtain a desired NPCR
value, one more round is needed by the conventional scheme to obtain a desired UACI
value. Therefore, the proposed substitution strategy provides superior computational
efficiency.
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4 Security Analysis

In this section, thorough security analysis has been carried out, including the most
important ones like brute-force analysis, statistical analysis and key sensitivity analysis,
to demonstrate the high security of the proposed scheme.

Table 1. Differential images used in NPCR and UACI tests

Test image
name

Color component Pixel position (x, y) Pixel value
Original Modified

F16 R (160, 271) 193 192
House B (43, 118) 130 129
Montreal R (309, 135) 3 4
Peppers B (249, 410) 131 132
Sailboat G (469, 406) 187 186

Table 2. Results of NPCR test

Test image
name

No. of cipher rounds
(proposed scheme)

No. of cipher rounds
(conventional scheme)

1 2 3 1 2 3

F16 0.32416 0.99605 0.99605 0.32416 0.99634 0.99609
House 0.61242 0.99600 0.99608 0.61242 0.99622 0.99613
Montreal 0.62026 0.99612 0.99600 0.62026 0.99620 0.99613
Peppers 0.64716 0.99610 0.99616 0.64716 0.99598 0.99606
Sailboat 0.34846 0.99603 0.99609 0.34846 0.99625 0.99607

Table 3. Results of UACI test

Test image
name

No. of cipher rounds
(proposed scheme)

No. of cipher rounds
(conventional scheme)

1 2 3 1 2 3

F16 0.04068 0.33441 0.33477 0.00508 0.33612 0.33461
House 0.30731 0.33446 0.33493 0.00480 0.33718 0.33447
Montreal 0.07786 0.33477 0.33397 0.00973 0.33615 0.33472
Peppers 0.32461 0.33440 0.33444 0.00253 0.33270 0.33420
Sailboat 0.17489 0.33456 0.33492 0.08755 0.33404 0.33467
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4.1 Brute-Force Analysis

In cryptography, a brute-force attack is a cryptanalytic attack that attempts to break a
cipher by systematically checking all possible keys until the correct one is found. A key
should therefore be long enough that this line of attack is impractical – i.e., would take
too long to execute. As mentioned above, the initial states of the Hénon map, (x0, y0),
and the Lü system, (x0, y0, z0), are used as the permutation and substitution keys,
respectively. As aforementioned, all the state variables in our algorithm are declared as
64-bit double-precision type, which gives 53 bits of precision. The two keys are
independent of each other, and therefore the key length of the proposed scheme is
53 � 5 = 265 bits. Generally, cryptographic algorithms use keys with a length greater
than 100 bits are considered to be “computational security” as the number of operations
required to try all possible 2100 keys is widely considered out of reach for conventional
digital computing techniques for the foreseeable future. Therefore, the proposed
scheme is secure against brute-force attack.

4.2 Statistical Analysis

Frequency distribution of pixel values. A good image cryptosystem should flatten the
frequency distribution of cipher-pixels values as such information has the potential to be
exploited in a statistical attack. The frequency distribution of pixel values in an image
can be easily explored by using histogram analysis. An image histogram is a graph
showing the number of pixels in an image at each different intensity value found in that
image. The histograms of the three color channels of the “Montreal” test image and its
output cipher-image produced by the proposed scheme are shown in Fig. 1. It’s clear
from Figs. 1(l)–(n) that the pixel values of all the three color components of the output
cipher-image are fairly evenly distributed over the whole intensity range, and therefore
no information about the plain-image can be gathered through histogram analysis.

Fig. 1. Histogram analysis. (a) and (h) are the test image and its output cipher-image,
respectively. (b)–(d) and (i)–(k) are the three color channels of (a) and (h), respectively. (e)–(g)
and (l)–(n) are the histograms of (b)–(d) and (i)–(k), respectively.
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The distribution of pixel values can be further quantitatively determined by cal-
culating the information entropy of the image. Information entropy, introduced by
Claude E. Shannon in his classic paper “A Mathematical Theory of Communication”,
is a key measure of the randomness or unpredictability of information content. The
information entropy is usually expressed by the average number of bits needed to store
or communicate one symbol in a message, as described by

HðSÞ ¼ �
XN
i¼1

PðsiÞ log2 PðsiÞ; ð14Þ

where S is a random variable with N outcomes {s1,…, sN} and P(si) is the probability
mass function of outcome si. It’s obvious from Eq. (14) that the entropy for a random
source emitting N symbols is log2N. For instance, for a ciphered image with 256 color
levels per channel, the entropy should ideally be 8, otherwise there exists certain degree
of predictability which threatens its security.

The information entropies of above five test images and their output cipher-images
are calculated, and the results are listed in Table 4. As can been seen from Table 4, the
entropy of all the output cipher-images are very close to the theoretical value of 8. This
means the proposed scheme produces outputs with perfect randomness and hence is
robust against frequency analysis.

Correlation between neighboring pixels. The simplest way to investigate the rela-
tionship between two neighboring pixels in an image is to use a scatter plot, which is
carried out as follows. First, randomly select Sn pairs of neighboring pixels in each
direction from the image. Then, the selected pairs is displayed as a collection of points,
each having the value of one pixel determining the position on the horizontal axis and
the value of the other pixel determining the position on the vertical axis.

Figures 2(a)–(c) and (d)–(f) show the scatter diagrams for horizontally, vertically
and diagonally neighboring pixels in the red channel of the “Montreal” test image and
its output cipher-image with Sn = 5000, respectively. Similar results can be obtained
for the other two color channels. As can be seen from Fig. 2, most points in (a)–(c) are
clustered around the main diagonal, whereas those in (d)–(f) are fairly evenly dis-
tributed. The results indicate that the proposed scheme can effectively eliminate the
correlation between neighboring pixels in an input image.

Table 4. Information entropies of the test images and their output cipher-images.

Test image name Plain-image Cipher-image

F16 6.663908 7.999784
House 7.485787 7.999748
Montreal 4.826442 7.999748
Peppers 7.669826 7.999757
Sailboat 7.762170 7.999741
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To further quantitatively measure the correlation between neighboring pixels in an
image, the correlation coefficients rxy for the sampled pairs are calculated according to
the following three formulas:

rxy ¼
1
Sn

PSn
i¼1

ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Sn

PSn
i¼1

ðxi � �xÞ2
� �

1
Sn

PSn
i¼1

ðyi � �yÞ2
� �s ; ð15Þ

�x ¼ 1
Sn

XSn
i¼1

xi; ð16Þ

�y ¼ 1
Sn

XSn
i¼1

yi; ð17Þ

where xi and yi form the ith pair of neighboring pixels.

Table 5 lists the calculated correlation coefficients for neighboring pixels in the
three color channels of the five test images and their output cipher-images. As can be
seen from Table 5, the correlation coefficients for neighboring pixels in all the three
color channels of the output cipher-images are very close to zero, and it further sup-
ports the conclusion drawn from Fig. 2.

Fig. 2. Graphical analysis for correlation of neighboring pixels. (a)–(c) and (d)–(f) are scatter
diagrams for horizontally, vertically and diagonally neighboring pixels in the red channel of the
“Montreal” test image and its output cipher-image, respectively. (Color figure online)
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4.3 Key Sensitivity Analysis

To evaluate the key sensitivity property of the proposed scheme, the “Montreal” test
image is firstly encrypted using a randomly generated secret key: Hénon map with
initial conditions (x0 = 0.825201589901473, y0 = −0.206378406313441) and Lü
system with initial condition (x0 = −5.11799279781735, y0 = 7.69311459457213,

Table 5. Correlation coefficients for neighboring pixels in the test images and their output
cipher-images.

Test image name Direction Plain-image Cipher-image
R G B R G B

F16 Horizontal 0.9516 0.9703 0.9290 –0.0054 0.0141 0.0045
Vertical 0.9735 0.9565 0.9636 –0.0031 –0.0156 –0.0273
Diagonal 0.9271 0.9350 0.9109 0.0176 –0.0029 –0.0032

House Horizontal 0.9575 0.9463 0.9691 0.0186 –0.0101 –0.0144
Vertical 0.9513 0.9368 0.9735 –0.0216 0.0149 –0.0028
Diagonal 0.9196 0.8933 0.9468 –0.0196 0.0045 0.0321

Montreal Horizontal 0.8927 0.8862 0.9517 0.0263 0.0086 –0.0004
Vertical 0.8870 0.8808 0.9418 –0.0204 –0.0016 0.0040
Diagonal 0.7994 0.8024 0.9117 0.0130 0.0056 0.0045

Peppers Horizontal 0.9691 0.9755 0.9674 –0.0064 –0.0027 –0.0247
Vertical 0.9656 0.9824 0.9666 –0.0091 0.0072 –0.0116
Diagonal 0.9583 0.9644 0.9465 –0.0116 –0.0333 –0.0074

Sailboat Horizontal 0.9537 0.9677 0.9698 0.0034 0.0006 –0.0227
Vertical 0.9558 0.9696 0.9704 0.0065 0.0056 –0.0125
Diagonal 0.9422 0.9530 0.9515 0.0030 –0.0063 –0.0214

Table 6. Decryption keys used for key sensitivity test

Figure Decryption key
Permutation part Substitution part

3(b) x0 = 0.825201589901473
y0 = −0.206378406313441

x0 = −5.11799279781735, y0 = 7.69311459457213
z0 = 25.4568382928529

3(c) x0 = 0.825201589901472
y0 = −0.206378406313441

x0 = −5.11799279781735, y0 = 7.69311459457213
z0 = 25.4568382928529

3(d) x0 = 0.825201589901473
y0 = −0.206378406313442

x0 = −5.11799279781735, y0 = 7.69311459457213
z0 = 25.4568382928529

3(e) x0 = 0.825201589901473
y0 = −0.206378406313441

x0 = −5.11799279781736, y0 = 7.69311459457213
z0 = 25.4568382928529

3(f) x0 = 0.825201589901473
y0 = −0.206378406313441

x0 = −5.11799279781735, y0 = 7.69311459457212
z0 = 25.4568382928529

3(g) x0 = 0.825201589901473
y0 = −0.206378406313441

x0 = −5.11799279781735, y0 = 7.69311459457213
z0 = 25.4568382928528
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z0 = 25.45683 82928529), and the resulting cipher-image is shown in Fig. 3(a). Then
the cipher image is tried to be decrypted using six decryption keys, one of which is
exactly the same as the encryption key and the other five have only one-bit difference to
it, as listed in Table 6. The resulting deciphered images are shown in Figs. 3(b–g),
respectively, from which we can see that even an almost perfect guess of the key does
not reveal any information about the original image. It can, therefore, be concluded that
the proposed scheme fully satisfies the key sensitivity requirement.

5 Conclusions

This paper has proposed a new permutation-substitution type color image cipher based
on chaotic Hénon Map and Lü System. To confuse the relationship between the
ciphertext and the secret key, the positions of colored subpixels in the input image are
scrambled using a pixel-swapping mechanism, which avoids the two main problems
encountered when using the discretized version of area-preserving chaotic maps. To
strengthen the robustness of the substitution procedure against chosen-plaintext attack,
we introduced a new mechanism for associating the keystream with the plain-image by
dynamically altering the values of the keystream elements under the control of
plain-subpixels values during the subpixel values mixing process. Compared with other
related mechanisms, the proposed mechanism allows the keystream sequence to be
reused among different rounds of substitution operation as keystream generation pro-
cess has no dependency on the plain-image. The proposed mechanism also helps
increase the diffusion intensity and the experimental results indicate that the proposed
scheme takes only two cipher rounds to achieve both desired NPCR and UACI values.
We have carried out an extensive security analysis, which demonstrates the satisfactory
security level of the new scheme. It can therefore be concluded that the proposed
scheme provides a good candidate for online secure image communication
applications.

Fig. 3. Results of key sensitivity test
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